
Received: 20 July 2023 - Accepted: 20 August 2023

DOI: 10.1002/mgea.6

REV I EW

Toward learning steelmaking—A review on machine learning
for basic oxygen furnace process

Maryam Khaksar Ghalati1 | Jianbo Zhang1,2 | G. M. A. M. El-Fallah1 |
Bogdan Nenchev3 | Hongbiao Dong1

1School of Engineering, University of Leicester,
Leicester, UK
2Nanjing Iron & Steel United Co., Ltd., Nanjing,
China
3Intellegens Limited, Cambridge, UK

Correspondence
Maryam Khaksar Ghalati and Hongbiao Dong.
Email: mkg18@leicester.ac.uk and
hd38@leicester.ac.uk

Abstract
Basic oxygen furnace (BOF) steelmaking is the most widely used process in global
steel production today, accounting for around 70% of the industry's output. Due to
the physical, mechanical, and chemical complexities involved in the process,
conventional monitoring and control methods are often pushed to their limits. The
increasing global competition has created a demand for new methods to monitor
and control the BOF steelmaking process. Over the past decade, Machine Learning
(ML) techniques have garnered substantial attention, offering a promising pathway
to enhance efficiency and suitability of steel production. This paper presents the
first comprehensive review of ML applications in the BOF steelmaking process.
We provide an introduction to both fields: an overview of the BOF steelmaking
process and ML. We analyze the existing work on ML applications in BOF
steelmaking and synthesize common concepts into categories, supporting the
identification of common use cases and approaches. This analysis concludes with
the elaboration of challenges, potential solutions, and a future outlook for further
research directions.
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1 | INTRODUCTION

The steel industry is characterized by a diverse range of steel
types, each with unique characteristics such as chemical
composition, heat treatments, and mechanical properties that
are tailored to meet the demands of the market. With more
than 3500 identified steel types, the industry has experienced
remarkable growth and evolution, with approximately 75%
of these steel types developed in the past 2 decades. Man-
ufacturers have made significant strides in improving the
quality and performance of steel, driven by advances in
technology, innovation, and research.

Steel is one of the most versatile materials in terms of its
properties and composition, strength to weight ratio, and its

ability to be infinitely recycled into new products. In 2021,
the production of world steel has reached the peak of
1950 Mt[1] while in 2022, steelmakers confronted energy
crises and economic slowdowns, resulting in a 4% decline in
worldwide production.[2] The use of steel is projected to
increase in the future with the proliferation of infrastructural
development. On the other hand, the steel industry is a sig-
nificant contributor to global carbon emissions. According to
the “International Energy Agency,” the steel industry ac-
counts for around 7% of global CO2 emissions.

The steel industry is under pressure since there is a
growing emphasis on industrial decarbonization policies like
the European “Fit for 55” initiative, which aims to reduce
emissions to 55% by 2030 compared to 1990 levels,
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targeting significant reductions in carbon emissions by
2050.[3] Such policies and increased demand in profound
steel transformation in industrial activity and machine
learning (ML) in steelmaking is a promising approach for
sustainable and optimized steelmaking.

The industry's competitive nature necessitates advance-
ments in quality monitoring, process optimization, and effi-
ciency improvement. Industry 4.0,[4] incorporating the
Internet of Things, cloud computing, and smart sensors,
plays a vital role in pioneering innovative strategies. The
fourth industrial revolution enables full traceability of the
production process and real-time data collection. The
immense data generated, however, introduces new chal-
lenges, which can be tackled through data-driven models,
specifically ML algorithms. The escalating volume of
available data in industrial plants emphasizes the crucial role
of ML. The utilization of ML methods has the potential to
address specific industrial needs, allowing for a more precise
understanding and control of complex processes.

ML has demonstrated potential in various industrial ap-
plications, from smart manufacturing[5] to designing super-
alloys,[6] improving the understanding of mechanical
properties of additively manufactured composite mate-
rials,[7] and predicting anisotropic mechanical properties in
high-temperature alloys used in industry-grade applica-
tions.[8] In the context of the steel industry, ML techniques
have found applications in predicting solidification cracking
in stainless steels,[9] optimizing continuous steel casting,[10]

and predicting mechanical properties of hot-rolled steel
plates.[11]

The basic oxygen furnace (BOF) process is the most
widely used steelmaking process in the world, accounting for
more than 70% of global steel production. However, the
BOF process is energy-intensive and has a significant carbon
footprint. Monitoring the BOF steelmaking process poses a
set of significant challenges arising from the intense heat,
aggressive chemical environment, and violent mass move-
ments involved. Research efforts focusing on end-point
control of the BOF were initiated as far back as 1987,
with initial models employing mathematical approaches for
BOF end-point control.[12] Over time, monitoring systems
such as the sub-lance system, flame spectroscopic system,
and off-gas analysis system were implemented to provide
dynamic tracking of the BOF process. Beyond their control
functions, these systems generate a substantial volume of
data. This wealth of information is incredibly valuable for
the development of data-driven models in the BOF process.

A comparative analysis highlighting mathematical
modeling, BOF process monitoring analysis, and data-driven
modeling, specifically in the context of end-point carbon
prediction, demonstrates a significant advantage for data-
driven modeling. While mathematical modeling provides
less than 70% accuracy and monitoring analysis improves
this to a range of 80%–90%, data-driven prediction surpasses
both with accuracy rates over 90%.[13] This validates the
importance of focusing research and development efforts on
data-driven methodologies for improved process control.

ML techniques can be applied to various aspects of steel-
making, such as raw material selection, process control, and
product quality prediction.[14]

This survey is the first of its kind to provide a compre-
hensive overview of over a decade's worth of active research
in the sphere of steelmaking, specifically focusing on the use
of ML in the BOF process. Our intention is to illuminate the
fascinating intersection of these two areas, uncovering their
potential for advancing this evolving industrial field. The
structure of the paper is as follows: Section 2 delivers a brief
yet comprehensive introduction to the BOF process (Sec-
tion 2.1) and elaborates on the fundamental principles of ML
(Section 2.2). In Section 3, we break down the methodology
behind the data-driven modeling workflow, tailored specif-
ically for the BOF process. Section 4 highlights some key
examples of ML applications within the BOF process, along
with an in-depth reporting of their results. Finally, Section 5
concludes the paper with an insightful look toward the future
of research in this area, focusing on the development of more
intelligent and sustainable steelmaking processes.

2 | BACKGROUND

2.1 | Overview of basic oxygen furnace

The BOF is a cylindrical converter with a rounded base,
designed to accommodate capacities ranging from 60 to 400
tons.[15] Its operation involves temperature elevation and
decarburization of hot metal through the injection of an
oxygen jet at supersonic speeds. The distinguishing feature
of BOF technology is its exothermic characteristic. The
necessary heat for the process is generated from the oxida-
tion of carbon and various other impurities such as silicon,
manganese, and phosphorus present within the hot metal.
The most prominent factors leading to a rise in temperature
are the oxidation reactions of carbon and silicon.

However, the process' intricacy arises from factors like
rapid heat generation, turbulent bath movement, the impact
of the supersonic oxygen jet on the metal bath, multiphase
flows, and the high-temperature dissolution and melting of
scrap.[16]

BOF steelmaking has remarkably enhanced the speed of
the steelmaking process. The process duration has been
dramatically cut from the 5–7 h needed with the open-hearth
furnace technology to less than 30 min.[17] The process
commences with the hot metal at about 1200–1400°C, which
is subsequently elevated to 1550–1700°C. This high-
temperature state is essential for the conversion of high-
carbon pig iron (4.5%–5%) to low-carbon steel (under
0.1%), a process facilitated by blowing pressurized oxygen
into the converter through a water-cooled lance. This oxi-
dizes the impurities by creating slag and off-gases and pro-
ducing low-carbon steel.

Monitoring technologies used during the blowing pro-
cess for endpoint prediction fall primarily into two cate-
gories: contact and noncontact measurements.[18] Contact
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measurement, represented by the sub-lance measurement, is
a single-use system requiring immersion into molten steel.
The first sub-lance measurement, in-blow sampling—
temperature sampling carbon (TSC), occurs between 80%
and 90% of the oxygen blowing time, and the second sub-
lance sampling, end-blow sampling—temperature sampling
oxygen (TSO), occurs at the end of the blowing time.
Noncontact measurements, exemplified by off-gas analyzers,
estimate the carbon content based on the thermodynamics of
off-gases. A detailed schematic of the BOF process is pre-
sented in Figure 1.

2.2 | Machine learning

ML, an innovative discipline, focuses on two intertwined
aspects: the feasibility of developing computer systems that
improve their performance through experience and the
elementary statistical, computational, and information-
theoretic principles that govern various learning entities,
including digital, biological, and organizational systems.[19]

This field provides computer systems with the capability to
perform tasks such as prediction, diagnosis, planning, and
recognition by learning from historical data.

ML encompasses three paradigms—supervised, unsu-
pervised, and reinforcement learning—and finds application
across various disciplines. These categories are explained in
Figure 2. Its common tasks include regression, classification,
clustering, dimensionality reduction, and anomaly detection.

Supervised learning methods, such as support vector
machines (SVM), decision trees, ensemble models, and
neural networks, work with labeled data and are primarily
used for regression and classification tasks as they infer an
underlying function mapping inputs to outputs.[20]

In contrast, unsupervised learning algorithms like k-
means, hierarchical clustering, principal component analysis,

and auto-encoders operate on unlabeled data and serve
clustering and dimensionality reduction tasks. These tech-
niques help uncover hidden structures or simplify complex
datasets.[21]

Reinforcement learning[22] employs strategies like Q-
learning to optimize sequential decision-making tasks
through a reward–penalty feedback loop.

The efficacy of ML models critically depends on the
quality and volume of data as well as the suitability of the
chosen algorithm. Hence, the role of sophisticated data
analysis and appropriate algorithm selection is emphasized
to achieve accurate outcomes.

The selection of ML models significantly influences data
analysis effectiveness and is often guided by data charac-
teristics and problem complexity. As depicted in Figure 3,
simpler models like linear regression may be adequate for
tasks with less complex relationships, whereas more com-
plex tasks may require sophisticated methods like neural
networks or ensemble models.

Complex models require careful attention to hyper-
parameters, which are specific parameters set prior to the
training process. These hyperparameters, such as the
learning rate in neural networks or the number of neighbors
in K-nearest neighbors (k-NN), impact the model's training
and final performance. Hyperparameter tuning can signifi-
cantly improve model accuracy and generalization, with
techniques like grid search and random search being
commonly used for this optimization.

F I GURE 1 Schematic of the basic oxygen furnace process.

F I GURE 2 Three main paradigms of machine learning.
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To evaluate the performance of a model with selected
hyperparameters on unseen data, a technique called cross-
validation is employed. Cross-validation partitions the data
and averages results from multiple splits, thereby providing a
robust measure of model performance, reducing overfitting,
and leading to a more generalizable model.

In sum, ML's versatility and adaptability, underpinned by
its diverse range of methodologies, algorithms, model
complexity considerations, and hyperparameter fine-tuning,
underscore its capacity to address a broad spectrum of
problems, depending on the nature of available data and
specific task requirements.

3 | DATA-DRIVEN MODELING
WORKFLOW FOR BOF PROCESS

In the context of designing and deploying data models for
industrial processes, the Cross-Industry Standard Process for
Data Mining (CRISP-DM) has emerged as the de facto
methodology.[23] This data-driven approach comprises six
key stages: business understanding, data understanding, data
fusion and preparation, modeling, evaluation, and deploy-
ment. These stages create a coherent and iterative workflow,
facilitating an effective and efficient integration of data-
driven models into industrial processes. The following sec-
tions delve into a tailored application of this workflow for
the BOF process, shedding light on the practical aspects and

challenges of implementing a data-driven modeling
approach in a complex industrial setup.

3.1 | BOF database

The data-driven modeling of the BOF process leverages a
comprehensive database comprising steel production data
sourced from industrial BOF converters across several
countries, including China,[24] India,[25] and Sweden.[26]

This database incorporates diverse types of data—static
tabular data, time-series data, and image data—dictated by
the underlying BOF technology and the data collection
strategies adopted by the respective companies.

The static data segmented into process parameters,
blowing parameters, additives information, sampling test
results during the process, and end-of-blow features. Process
parameters consist of elements such as liquid iron informa-
tion (the hot metal's composition, temperature, and quantity),
scrap information, and furnace information (generic details
like the furnace and lance ID). On the other hand, blowing
parameters encapsulate data like blowing time, the total
oxygen volume blown. Additive information includes the
type and quantity of heat additives—like dolomite and
limestone—introduced during the blow.

At the conclusion of the process, the end-of-blow fea-
tures such as the final temperature and elemental composi-
tion are gathered through sub-lance sampling (TSO) and lab
analysis, respectively. Additionally, certain facilities collect
sampling test results during the process with sub-lance
sampling (TSC) at an estimated 80%–90% mark of the
blowing time.

Time-series data, encompassing off-gas data, vessel vi-
bration, and audiometry measurements are collected
throughout the blowing process, while flame information
primarily includes flame images and flame radiation spec-
trum captured during the process. Figure 4 reveals that static
features have been predominantly employed for BOF data-
driven modeling. Despite the significant role of process
time-series features, their availability has been limited to a
few BOF datasets.[26–28] In Brämming et al.,[29] a compre-
hensive blend of all available features—process parameters,
image, off-gas data, and vessel vibration audiometry
measurements—was utilized to estimate foam height and
endpoint phosphorus prediction.

3.2 | Data preprocessing

In the data-driven modeling of the BOF process, data pre-
processing plays a crucial role in transforming raw data into
a format amenable to further analysis. While preprocessing
generally follows a standard framework, encompass data
cleaning, missing value handling, outlier detection, and data
normalization, two aspects stand out in the context of the
BOF process: feature extraction and feature engineering.

F I GURE 3 A machine learning model complexity spectrum. A two-
dimensional complexity increment is depicted with the vertical axis
spanning from simpler linear models at the top to deep learning models
at the bottom. The horizontal axis shows the progression within each
category, for instance, within deep learning models from multilayer
perceptron to transformers. As we move downward and rightward,
models demand more data and potentially offer improved accuracy,
subject to the specific nature of the data.
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Importantly, industrial datasets, including those obtained
from the BOF process, are inherently noisy and often contain
substantial sparsity. This characteristic makes the pre-
processing step not just beneficial but necessary for the
subsequent analysis to be effective and accurate.

Feature extraction, usually employed in conjunction with
various feature importance methodologies, aids in identi-
fying the most relevant features. In the context of BOF
studies, various methodologies for feature importance, such
as statistical tests, correlation analysis,[30] or ML techniques
like principal component analysis[31] are often employed.
This process enhances the efficacy of the modeling phase by
ensuring that the resulting models accurately capture
inherent data patterns, ultimately facilitating more reliable
predictions. An example of effective feature extraction is
demonstrated in the work by Qi et al.,[32] where optimal
feature subset selection was performed to improve regres-
sion accuracy.

Feature engineering, on the other hand, leverages domain
knowledge and well established principles to derive new,
informative features based on existing data.[26,33] Feature
engineering serves as a bridge between the raw data and the
domain expertize, thereby enabling a more integrative
approach to modeling that combines both data-driven and
physical-based methods. This aspect is illustrated in the
work by Bae et al.,[26] where thermodynamic principles were
used to extract and incorporate engineered features into BOF
datasets, thereby enhancing the value of data-driven
modeling of the BOF process.

3.3 | Modeling

The modeling of the BOF process has witnessed the appli-
cation of various ML techniques over the past decade,

ranging from conventional regression models to more recent
deep learning approaches. The predominant method utilized
is supervised learning aimed at achieving regression tasks,
see Figure 5a. However, hybrid models, which merge un-
supervised learning for clustering sparse BOF data and apply
different models on each cluster, have also found applica-
tion.[34,35] A recent notable trend is the use of deep rein-
forcement learning to capture the dynamic nature of the BOF
process.[36]

Early research into the data-driven modeling of the BOF
process primarily hinged on case-based reasoning (CBR).
CBR groups instances based on their behavior, thereby
enabling a representation of a variety of heats and providing
crucial insights into the BOF process.[37,38]

Support vector machines for regression (SVR) emerged
as an effective tool to capture nonlinear relationships within
the data, with the choice of kernel function, particularly the
radial basis function kernel, significantly affecting the
model's performance. The modeling of BOF data using SVR
has been explored in various studies,[39,40] and advance-
ments have been made using an improved twin support
vector regressor.[41,42]

Since their introduction into the BOF field in 2002,[43]

the use of artificial neural networks (ANN) has seen a steady
rise. Most of these models are based on multilayer percep-
tron (MLP) networks,[31,44,45] but many studies fail to report
network configurations such as the number of layers and
neurones. Notably, Bae et al. applied a three-layer MLP
model in their work and used different configurations for
predicting three BOF endpoints.[26] Wang et al. provided a
detailed account of their use of a one-dimensional con-
volutional neural network (CNN) and its network
structure.[46]

Several hybrid models combining different methodolo-
gies have also been effective in enhancing prediction

F I GURE 4 Distribution of feature usage in the input of machine learning models of basic oxygen furnace. The bar plot illustrates the count of papers
employing various types of input features, categorized by the feature type.
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accuracy in the BOF process. For instance, weighted k-
means clustering, coupled with distinct ANN for each
cluster, was successfully applied by Wang et al.[47] Feng
et al. combined various algorithms such as SVR, random
forest (RF), and ANN with Bayesian integration and ach-
ieved promising results.[48] Jiang et al. introduced a hybrid
approach merging multiple linear regression (MLR) and
Gaussian process regression (GPR) to simultaneously cap-
ture global trends and local noise-induced fluctuations.[49]

Several studies have also embarked on comparative as-
sessments of differentML algorithms. In one such study, Laha
et al. compared RF, ANN, and SVR.[25] Zhang et al. compared
RF, Gradian boost regressor (GBR), CNN, and metallurgical
mechanism model (MMM), finding that RF and GBR out-
performed the other models.[50] In a more comprehensive
comparative study,Bae et al. demonstrated thatANNandSVR
significantly outperformed other ML techniques in predicting
temperature, carbon, and phosphorus endpoints.[26]

Recently, there has been an increasing interest in incor-
porating novel deep learning (DL) methodologies such as
transfer learning,[51] graph neural networks (GNNs),[52]

CNNs,[46] auto-encoder Bayesian network,[24] and rein-
forcement learning.[36] The application of recurrent neural
networks (RNNs), specifically long short-term memory
(LSTM), has been explored for handling time-series data.[53]

A deep learning framework based on fully connected net-
works (FCN) and CNN has been developed for regression
tasks, taking into account both static and multivariate time
series information.[28]

The increasing diversity of modeling techniques applied
to the BOF process can be seen visually in Figure 5b, which
displays a statistical plot of the distribution of model types
over the past decade. This diversity illustrates the dynamic
nature of data-driven modeling in the BOF process and
provides a strong indication of the potential for continued
innovation and advancement in this field.

On the other hand, in light of the observations from
Figure 3 (complexity of ML models) and Figure 5b (model-
wise distribution in BOF data-driven modeling), it is notable
that while simpler models such as SVM have been exten-
sively used, the inherent complexity of the BOF process

calls for more sophisticated methodologies. Ensemble
models, which combine the strengths of multiple models,
and deep learning models, capable of handling high-
dimensional and sequential data, have started to emerge.
Future research should focus on these more complex models,
underscoring the potential of deep learning and ensemble
techniques for a comprehensive understanding and predic-
tion of the BOF process.

3.4 | Evaluation

Performance evaluation is an integral aspect of any ML
process, as it allows for the quantification of model perfor-
mance through the comparison of predicted and actual re-
sults. A crucial component of evaluation frameworks across
various fields is the use of performance metrics or error
measures. These metrics serve as mathematical constructs,
providing a means to measure the proximity between ex-
pected and actual outcomes. These measures commonly
involve mean absolute error (MAE) and root mean squared
error (RMSE), among others, and are conceptually tied to the
scientific notions of distance and similarity.

In regression tasks within ML, performance metrics are
employed to compare the predictions generated by the
trained model with the actual (or observed) data from the test
dataset. The outcome of these comparisons plays a pivotal
role in decision-making processes associated with the se-
lection of appropriate ML algorithms for implementation.

With regard to regression, we advise readers to refer to
Botchkarev[54] for an understanding of metrics such as
MAE, mean squared error, and root mean square error.
Additionally, Hossin and Sulaiman[55] provides insights into
the coefficient of determination (R-squared) and various
classification metrics.

In addition to these conventional metrics, a hit rate (HR)
is frequently used in ML predictive models for BOF end-
points.[24,32,37] Often, it is introduced either as the primary
evaluation metric or in combination with more common
regression evaluation metrics such as R-squared or RMSE.
The HR is mathematically defined as follows:

F I GURE 5 The statistical distribution of ML techniques applied to the BOF process. (a) Task-wise distribution showcasing the variety of tasks to
which ML techniques are applied in the BOF process. (b) Model-wise distribution presenting the range of different ML models utilized in BOF data-driven
modeling. BOF, basic oxygen furnace; ML, machine learning.
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HR¼
NðjPredicted − Actualj < ϵÞ

NðTest samplesÞ

In this equation, the tolerance ϵ is adjusted according to
the target range. For instance, the reported tolerance for
endpoint temperature has been �15, �10, and �5, while for
endpoint carbon, most studies have reported tolerance values
of �0.02, �0.01, and �0.005.[56]

The use ofHR as a performancemetric in the evaluation of
ML models for the BOF process has certain limitations. Its
reliance on the data range and the chosen tolerance, ϵ, makes it
difficult to compare across different studies due to the inherent
variability. Furthermore, the HR does not inherently measure
goodness of fit, a key aspect for regression tasks, which most
studies entail (see Figure 5a). However, when used alongside
traditional regressionmetrics likeR-squared orRMSE, theHR
offers an additional perspective on model performance,
showing how frequently model predictions fall within a
specified tolerance.This canbevaluable in industrial scenarios
where a certain margin of error is acceptable.

In summary, while the HR should be used cautiously due
to its limitations, it can complement a multimetric evaluation
framework. Future studies should aim for transparency when
reporting HR results and provide clear justification for the
choice of tolerance, improving interpretability and
comparability.

4 | ANALYSIS OF ML USE CASES IN
BOF

In this section, we delve into an analysis of recent de-
velopments in the utilization of ML for modeling the BOF
process. Our investigation pivots around three key categories
where ML is increasingly being employed: endpoint pre-
dictions, anomaly detection, and specific use cases. Despite
the relatively less frequent application of anomaly detection
using BOF data, this area has been prioritized due to its
increasing relevance and future potential in this field.

The most prevalent application of ML in the BOF pro-
cess has been in the realm of endpoint predictions. This
aspect specifically addresses the prediction of endpoint
temperature and chemical compositions, key elements that
influence the final properties of the steel produced. The array
of studies and use cases that have emerged in this area are
discussed in depth in Subsection 4.1, with corresponding
studies and related use cases collated in Tables 1–4.

In addition to endpoint predictions, the role of ML in
anomaly detection is gaining prominence. Anomaly detec-
tion is integral to identifying and mitigating potential dis-
ruptions, thus ensuring the smooth operation of the BOF
process. We discuss this increasingly significant aspect in
Subsection 4.2 and summarize relevant studies in Table 5.

We also shed light on lesser-known but emerging areas
of ML application in the BOF process in Subsection 4.3.
These novel applications illustrate the versatility of ML and
its potential to disrupt traditional BOF operations.

4.1 | Endpoint predictions

The application of ML in the BOF steelmaking process has
shown profound impacts, particularly in predicting the
endpoint. The endpoint is a critical juncture in the steel-
making process where the desired composition and temper-
ature of the molten steel are achieved. Its accurate
determination, influenced by several parameters such as
elemental concentrations and impurity levels, is indispens-
able for producing high-quality steel conforming to desired
specifications. The importance of accurate endpoint predic-
tion lies in its direct impact on steel's final properties. An
optimal chemical composition minimizes the necessity for
adding expensive alloys in subsequent stages, while an
appropriate end-of-blow temperature prevents energy in-
efficiencies and potential disruptions in the workflow.

In this context, ML-based approaches have been exten-
sively applied to estimate the endpoints, primarily focusing
on temperature and carbon content, as summarized in
Tables 1 and 2.

Gu et al.[53] integrated CBR and LSTMmodels to improve
endpoint predictions, showinghigher accuracy than traditional
SVR and ANNmodels. Furthermore, some studies[52,76] have
expanded theMLapplication scope to simultaneous prediction
ofmultiple endpoint targets, departing from themore common
singular focus approach. However, potential data bias from
substantial sample reduction in certain studies calls for a
careful interpretation of the results.[41,61,82]

Several ML models, as collated in Table 3, have been
deployed to predict endpoint phosphorus, while less focus
has been given to endpoint sulfur, with the existing studies
listed in Table 4. These explorations signify the expanding
frontiers of ML application in the BOF process, with notable
successes and room for further advancements.

4.2 | Anomaly detection in the BOF process

In the BOF steelmaking process, meticulous process
monitoring and accurate anomaly detection are paramount
for preserving operational stability, process reliability, and
the resultant steel quality. Various operational anomalies,
such as the prevalent splashing phenomenon, can introduce
substantial challenges related to safety, environmental
consequences, operational efficiency, and quality control.
The splashing phenomenon, characterized by an eruption of
molten steel due to improper operations leading to a
buildup of carbon oxides in the molten pool, regularly
arises in the BOF process.[88] This anomaly not only de-
grades the quality of the produced steel but also poses se-
vere safety hazards, potentially leading to injuries,
decreased efficiency, environmental pollution, and difficult
operational conditions.

The mitigation of risks associated with such anomalies
necessitates the development of robust methods for auto-
matic anomaly detection, root cause diagnosis, and the pre-
diction of future occurrences. Despite the significance of this
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TABLE 1 Endpoint temperature prediction.

Ref.
Training
samples Type of features ML task Method Evaluation metric

[51] 2000 Process parameters and blowing parameters Regression Auto-encoder
network

Hit rate and RMSE

[41] 200 n/a Regression SVR RMSE, MAE, and hit
rate

[26] 9708 Process parameters, blowing parameters, additives
information, sampling test results during process, and
time-series data

Regression MLP, SVR, XGBoost,
LR, DT, and k-NN

Hit rate

[48] 3750 Process parameters and blowing parameters Bayesian integration of
SVR, RF, and ANN

Regression Hit rate

[57] 2000 Blowing parameters and sampling test results during the
process

Regression SVR Hit rate

[58] 846 Process parameters, blowing parameters, additives
information, and time-series data

Regression CBR þ LSTM Hit rate

[36] 320 Process parameters, blowing parameters, additives
information, and time-series data

Regression Deep reinforcement
learning

MAE and hit rate

[40] 1500 Process parameters, blowing parameters, and additives
information

Regression SVR MAE, RMSE, and hit
rate

[24] 200 Process parameters, blowing parameters, additives
information, and time-series data

Regression Bayesian auto-
encoder

RMSE and MAE

1000 Process parameters, blowing parameters, additives
information, sampling test results during process, and
time-series data

[56] 2000 Process parameters and blowing parameters Regression Deep learning Hit rate

[59] 743 Process parameters, blowing parameters, additives
information, and sampling test results during the
process

Regression ANN, SVR RMSE and hit rate

[60] 150 Process parameters, blowing parameters and additives
information

Regression SVR Hit rate

[61] 62 Process parameters, blowing parameters, and additives
information

Regression MLP Hit rate

[62] 60a Process parameters, blowing parameters, additives
information, and sampling test results during the
process

Regression Extreme learning Hit rate

[63] 4808 Process parameters, blowing parameters, additives
information, and time-series data

Regression Ridge regression, RF,
gradient boosted
regression tree

RMSE and R-squared

[64] 800 Process parameters, blowing parameters, and additives
information

Regression MLP Hit rate

[65] 100 Process parameters, blowing parameters, and additives
information regression

SVR Hit rate

[66] 420a Process parameters, blowing parameters, additives
information, and flame information

Regression CBR þ expert system
model

Hit rate

[67] 150 Process parameters, blowing parameters, additives
information, and sampling test results during the
process

Regression ANN Hit rate

[68] 872a Process parameters, blowing parameters, additives
information, and time-series data

Regression Multivariate adaptive
regression splines,
ANN, SVR, RF,
k-NN

RMSE and R-squared

[69] 1629 Process parameters, blowing parameters, and additives
information

Classification SVM Precision, recall, F1-
score, and accuracy

8 of 18 -

 29409497, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

gea.6 by C
am

bridge U
niversity L

ibrary, W
iley O

nline L
ibrary on [26/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



aspect, anomaly detection has seen less focus in BOF data
analysis compared to other application areas, as is evident
from the studies summarized in Table 5.

Addressing this gap, Qian et al. made significant strides in
detecting the splashing phenomenon within the BOF pro-
cess.[27] The authors proposed a novel method capable of
converting irregularly gathered observations into smoothly
differentiated functions, effectively highlighting the traits of
splashing anomalies. This method successfully handles strong
linear correlations within the data, thereby significantly
improving anomaly detection. With a testing dataset of 665
off-gas records of CO and CO2 during the BOF process, the
method exhibited an impressive detection accuracy of 97%.

Moreover, other anomalies such as slopping and drying
have been identified using multivariate time-series analysis
(MTSA). This analysis incorporates dynamic data from
vessel vibrations, audio meter measurements, and off-gas
data as reported in Brämming et al.[29] for slopping and[87]

for drying and splashing.
This highlights the necessity for further research into the

application ofML for time-series data analysiswithin theBOF
process. Given the depth and complexity of such data, its
comprehensive analysis could provide valuable insights into
the incidence and prediction of a range of anomalies, thereby
improving overall operational efficiency and safety.

4.3 | Additional ML applications in the
BOF process

Beyond the explored areas of endpoint predictions and
anomaly detection, ML exhibits promising potential in other
facets of the BOF process.

In Rahnama et al.'s study,[30] ML analysis was applied to
process data from a pilot plant. The main objectives were to
identify correlations between operational parameters and
reactor performance, with reactor performance defined as the
rate of decarburization. The researchers trained a neural
network based on the pilot plant dataset, developing a
regression model to predict the decarburization rate. This
model was then employed to predict the decarburization rate
in an industrial BOF furnace based on the lance height and
total oxygen flow.

Further, in the work by Wang et al.,[80] a real-time
method for predicting carbon content during the second
blow period of the BOF process was proposed. The authors
transformed the conventional time-based exponential
decarburization model into an oxygen-based variant. Then,
they used a CBR method, a data-driven approach, to define
the key parameter in the decarburization model.

Bramming et al.[29] embarked on a complex task of
monitoring several critical control parameters during the
converter steelmaking process to prevent undesired events,
such as slopping.

Lastly, Sun et al.[89] dealt with the crucial task of
accurately determining the endpoint of converter steel-
making. They assembled an experimental dataset
comprising 1236 flame images of the furnace mouth, cate-
gorized into early, middle, and late stages of converter
steelmaking. To analyze this image data, they employed a
CNN model, specifically the DenseNet architecture, result-
ing in a remarkable accuracy of 96% in blowing endpoint
judgment.

These diverse applications, summarized in Table 6,
highlight the versatility of ML in enhancing different aspects
of the BOF process. Each study offers a unique perspective

TABLE 1 (Continued)

Ref.
Training
samples Type of features ML task Method Evaluation metric

[70] 250 Blowing parameters and sampling test results during the
process

Regression ANN RMSE and hit rate

[71] n/a Process parameters and time-series data Regression SVR EMSE

[72] 4332a Process parameters, blowing parameters, additives
information, time-series data

Regression Evolutionary neural
network

R-squared and hit rate

[28] 7158a Process parameters, and time-series data Regression CNN RMSE

[39] 1400 Process parameters, blowing parameters, and additives
information

Regression SVR MAE

[73] 450 Blowing parameters and sampling test results during
process

Regression SVR Hit rate

[42] 1000 Process parameters, blowing parameters, and additives
information

Dimension
reduction þ regression

PCA þ SVR RMSE, MAE, and hit
rate

[74] 90 Process parameters, blowing parameters, and additives
information

Regression SVR MAE and hit rate

Abbreviations: ANN, artificial neural networks; CBR, case-based reasoning; CNN, convolutional neural network; LSTM, long short-term memory; MAE, mean absolute error;
ML, machine learning; MLP, multilayer perceptron; n/a, not applicable; RF, random forest; RMSE, root mean squared error; SVR, support vector machines for regression.
aIt is not specified whether these are total samples or training samples.
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TABLE 2 Endpoint carbon prediction.

Ref.
No. of
samples Type of features ML task Method

Evaluation
metric

[26] 9708 Process parameters, blowing parameters, additives
information, sampling test results during process,
and time-series data

Regression MLP, SVR, XGBoost, LR, DT,
and k-NN

Hit rate

[53] 1109 Process parameters, blowing parameters, additives
information, and sampling test results during
process

Classification CBR þ LSTM Hit rate

[58] 846 Process parameters, blowing parameters, additives
information, and time-series data

Regression CBR þ LSTM Hit rate

[36] 320 Regression Deep reinforcement learning MAE and hit rate

[51] 2000 Process parameters and blowing parameters Regression Auto-encoder network Hit rate and
RMSE

[24] 200 Process parameters, blowing parameters, additives
information, and time-series data

Regression Bayesian auto-encoder RMSE and MAE

1000 Process parameters, blowing parameters, additives
information, sampling test results during process,
and time-series data

[75] 25 Blowing parameters, and flame information (radiation
spectrum)

Regression þ classification SVC þ SVR Hit rate

[76] 2331 Process parameters, blowing parameters, additives
information, and end-of-blow features

Regression GNN R-squared, MAE,
RMSE and hit
rate

[41] 200 n/a Regression SVR RMSE, MAE and
hit rate

[56] 2000 Process parameters and blowing parameters Regression Deep learning Hit rate

[77] 150 Flame information (radiation spectrum) Classification SVC Accuracy

[32] 750 Regression k-NN Hit rate

[60] 150 Process parameters, blowing parameters, and
additives information

Regression SVR Hit rate

[61] 62 Process parameters, blowing parameters, and
additives information

Regression ANN Hit rate

[62] 60a Process parameters, blowing parameters, additives
information, and sampling test results during
process

Regression Extreme learning Hit rate

[64] 800 Process parameters, blowing parameters, and
additives information

Regression ANN Hit rate

[44] 15,000a Process parameters and blowing parameters Regression MLP Hit rate

[57] 2000 Blowing parameters and sampling test results during
the process

Regression SVR Hit rate

[65] 100 Process parameters, blowing parameters, and
additives information

Regression SVR Hit rate

[78] 170 Process parameters, blowing parameters, and
additives information

Regression SVR Hit rate

[79] 1094 Process parameters, blowing parameters, additives
information, and sampling test results during
process

Clustering þ regression CBR þ SVM Hit rate

[67] 150 Process parameters, blowing parameters, additives
information, and sampling test results during
process

Regression ANN Hit rate
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and contributes novel methods to improve the efficiency and
quality of steel production, reinforcing the transformative
potential of ML in the steelmaking industry.

5 | CONCLUSION AND FUTURE
RESEARCH DIRECTIONS

As we enter the era of the fourth industrial revolution, the
convergence of big data analytics and ML methodologies
opens up new possibilities for data-driven modeling in the
steel industry. This thorough review seeks to build a bridge
between ML applications and the BOF steelmaking process.
Our objective is to highlight the potential opportunities and
challenges that await in this innovative field. To the best of
our understanding, this is the first survey that presents an
exhaustive analysis of ML techniques in relation to their use
in the BOF process. Our research underscores the pivotal
role of ML in steering the shift toward intelligent, efficient,
and sustainable steel production.

Existing research has provided key insights into the ap-
plications of ML techniques. However, most studies up to
this point have primarily employed shallow models on
relatively small datasets. Although these models have their
merits, they may not fully encapsulate the intricacies of real-
world steelmaking processes, which may limit their predic-
tive performance and generalizability. Reflecting on the
current state of research, the main limitations observed can
be grouped into four key areas:

� Data underutilization: Most studies leverage small
datasets for training and not fully utilizing the wealth of
data available in steel plants as shown in Figure 6. It
should be acknowledged, however, that obtaining high-
quality, large volume data is challenging due to various
constraints in the industrial environment.

� Temporal features and process dynamics: Many studies
neglect the potential of time-series data and the inherent
dynamics of the BOF process. Furthermore, the opera-
tional applicability of some models is limited by the use of

TABLE 2 (Continued)

Ref.
No. of
samples Type of features ML task Method

Evaluation
metric

[68] 872a Process parameters, blowing parameters, additives
information, and time-series data

Regression Multivariate adaptive regression
splines, ANN, SVR, RF, k-
NN

RMSE and R-
squared

[70] 250 Blowing parameters and sampling test results during
process

Regression ANN RMSE and hit rate

[40] 1500 Process parameters, blowing parameters, and
additives information

Regression SVR MAE, RMSE and
hit rate

[72] 4332a Process parameters, blowing parameters, additives
information, and time-series data

Regression Evolutionary neural network R-squared and hit
rate

[14] 6510 Process parameters, blowing parameters, and
additives information

Regression MLP R-squared

[63] 4808 Process parameters, blowing parameters, additives
information, and time-series data

Regression Ridge regression, RF, gradient
boosted regression tree

RMSE and R-
squared

[28] 7158a Process parameters and time-series data Regression CNN RMSE

[39] 1400 Process parameters, blowing parameters, and
additives information

Regression SVR MAE

[80] 1000 Process parameters, additives information, and
sampling test results during the process

Regression CBR Hit rate

[73] 450 Blowing parameters and sampling test results during
the process

Regression SVR Hit rate

[42] 1000 Process parameters, blowing parameters, and
additives information

Dimension
reduction þ regression

PCA þ SVR RMSE, MAE and
hit rate

[74] 90 Process parameters, blowing parameters, and
additives information

Regression SVR MAE and hit rate

[81] 150 Flame information (radiation spectrum) Classification SVC MAE and
accuracy

Abbreviations: ANN, artificial neural networks; CBR, case-based reasoning; CNN, convolutional neural network; GNN, graph neural networks; LSTM, long short-term memory;
MAE, mean absolute error; ML, machine learning; MLP, multilayer perceptron; n/a, not applicable; RF, random forest; RMSE, root mean squared error; SVR, support vector
machines for regression.
aIt is not specified whether these are total samples or training samples.
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TABLE 3 Endpoint phosphorous prediction.

Ref.
No of
samples Type of features ML task Method

Evaluation
metric

[26] 9708 Process parameters, blowing parameters, additives
information, sampling test results during the
process, and time-series data

Regression MLP, SVR, XGBoost, LR, DT, and
k-NN

Hit rate

[31] 1600 Process parameters, blowing parameters, additives
information, sampling test results during process,
and end-of-blow features

Dimension
reduction þ regression

PCA þ ANN Hit rate and
R-squared

[45] 700 Process parameters, blowing parameters, and additives
information

Regression MLP Hit rate

[50] 668 Process parameters, blowing parameters, and additives
information

Regression Ridge regression, SVR, RF, CNN,
GBR, and metallurgical model

Hit rate

[82] 140 Process parameters, blowing parameters, and additives
information

Regression Deep extreme learning Hit rate

[83] 1500 Process parameters, blowing parameters, additives
information, sampling test results during process,
and end-of-blow features

Regression SVR Hit rate

[76] 2331 Process parameters, blowing parameters, additives
information, and end-of-blow features

Regression GNN R-squared,
MAE, and
RMSE

[29] 691 Process parameters, blowing parameters, end-of-blow
features, time-series data, and image

Regression Multivariate data analysis R-squared

[44] 15,000a Process parameters and blowing parameters Regression ANN Hit rate

[78] 170 Process parameters, blowing parameters, and additives
information

Regression SVR Hit rate

[84] 3085 End-of-blow features Classification SVM Accuracy

[38] 1500a Process parameters, blowing parameters, additives
information, sampling test results during process,
and end-of-blow features

Regression CBR Hit rate

[34] 1084 Process parameters, blowing parameters, and additives
information

Dimension
reduction þ regression

PCA þ MLP network RMSE

[72] 4332a Process parameters, blowing parameters, additives
information, and time-series data

Regression Evolutionary neural network R-squared and
hit rate

[14] 6510 Process parameters, blowing parameters, and additives
information

Regression MLP R-squared

[85] 16,000 Process parameters and additives information Clustering þ classification (k-means & DT) þ SVM Accuracy

[32] 750 Process parameters and blowing parameters Regression k-NN Hit rate

[63] 4808 Process parameters, blowing parameters, additives
information, and time-series data

Regression Ridge regression, RF, and gradient
boosted regression tree

RMSE and
R-squared

[28] 7158a Process parameters and time-series data Regression CNN RMSE

[39] 1400 Process parameters, blowing parameters, and additives
information

Regression SVR MAE

[86] 1350 Process parameters, blowing parameters, and additives
information

Regression Linear regression Hit rate

[47] 1500 Process parameters, blowing parameters, additives
information, sampling test results during process,
and end-of-blow features

Clustering þ regression k-means þ ANN Hit rate

Abbreviations: ANN, artificial neural networks; CBR, case-based reasoning; CNN, convolutional neural network; GBR, gradian boost regressor; GNN, graph neural networks;
MAE, mean absolute error; ML, machine learning; MLP, multilayer perceptron; RF, random forest; RMSE, root mean squared error; SVR, support vector machines for regression.
aIt is not specified whether these are total samples or training samples.
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some of the end-of-blow features to predict other end-of-
blow features, thereby neglecting the dynamics of the
process.

� Model simplicity: Despite the complexity of the BOF
process, simpler models have been predominantly used
(refer to Tables 1–6 and Figure 5b).

� Evaluation and transparency: A common limitation lies
in the prevalent use of HR as a performance metric, which
may not truly reflect model performance. Additionally,
there is a need for clearer differentiation between training
and testing accuracy, alongside better transparency about
the model structures. The lack of transparency in reporting
model structure poses challenges in replicability and
comparative study.

As shown in Figure 7, there has been a notable increase
in published papers on this subject, with a peak in 2022 and a
trend that suggests continued growth in 2023. Looking
ahead, the focus should pivot toward harnessing the richness
of data available in this domain and implementing advanced
deep learning techniques. The key directions proposed for
future research are given below:

� Data expansion: Enhancing performance and robustness
of ML models requires larger and more diverse datasets.
These should capture the variability in operational con-
ditions, raw materials, and product specifications.

Emphasis should be placed on sensor time-series data to
better represent the complex industrial scenarios, while
the challenges and costs of sensor implementation must
also be weighed.

� Advanced deep learning techniques: Advanced deep
learning techniques such as RNNs, CNNs, and autoen-
coders have demonstrated value in complex industrial
scenarios,[98] and there is a particularly untapped potential
for their application in the analysis of multivariate sensor
data in the steelmaking process. Transfer learning can also
accelerate model training and enhance predictive perfor-
mance, especially when steelmaking-specific data is
limited.[99]

� Multitask learning: The BOF process involves multiple,
highly correlated endpoints that require simultaneous
prediction. Multitask learning can effectively leverage
these correlations, improving prediction accuracy and
efficiency. Notably, graph neural networks provide a
suitable model architecture for this approach.[52]

Ultimately, the successful application of these advanced
ML models will signify the dawn of a new era in the
steelmaking industry, truly embodying the transformative
power of ML toward sustainable, efficient, and intelligent
steelmaking. It is through such advancements that the steel
industry will continue to innovate, evolve, and meet the
challenges of tomorrow.

TABLE 5 Anomaly detection.

Ref.
No. of
samples Type of features ML task Method

Evaluation
metric

[27] 500 Time-series data Anomaly detection Multivariate time-series
analysis þ SVM

Detection
rate

[29] 691 Process parameters, blowing parameters, end-of-blow features, time-
series data, and image

Regression Multivariate data analysis Hit rate

[87] 375a Process parameters, blowing parameters, additives information, and
time-series data

Anomaly detection Time-series data analysis Accuracy

Abbreviation: ML, machine learning.
aIt is not specified whether these are total samples or training samples.

TABLE 4 Endpoint sulfurous prediction.

Ref.
No. of
samples Type of features ML task Method Evaluation metric

[83] 1500 Process parameters, blowing parameters, additives
information, end-of-blow features, and sampling test
results during the process

Regression SVR Hit rate

[76] 2331 Process parameters, blowing parameters, additives
information, and end-of-blow features

Regression GNN R-squared, MAE,
and RMSE

[14] 6510 Process parameters, blowing parameters, and additives
information

Regression MLP R-squared

[63] 4808 Process parameters, blowing parameters, additives
information, and time-series data

Regression Ridge regression, RF, and gradient
boosted regression tree

RMSE and
R-squared

Abbreviations: GNN, graph neural networks; MAE, mean absolute error; ML, machine learning; MLP, multilayer perceptron; RF, random forest; RMSE, root mean squared error;
SVR, support vector machines for regression.
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TABLE 6 Other applications of ML in the BOF process.

Ref. Application
No. of
samples Types of features ML task Method Evaluation metric

[89] Blowing endpoint judgment 989 Flame information (image) Classification CNN (DenseNet) Accuracy

[37] Blowing oxygen volume
prediction

4000 Process parameters and
additives information

Regression k-NN þ CBR Hit rate and RMSE

[43] Predict oxygen and coolant
requirements of
reblowing

1600 Sampling test results during the
process and end-of-blow
features

Classification, regression ANN MAE

[90] Total oxygen volume
prediction

1300 Process parameters and end-of-
blow features

Regression ANN þ incremental
learning

Hit rate and
R-squared

[90] Second blow oxygen volume
prediction

1000 Process parameters, additive
information, sampling test
results during process, and
end-of-blow features

Regression ANN þ incremental
learning

Hit rate and
R-squared

[44] Second blow oxygen volume
and coolant mount
prediction

15,000a Process parameters and end-of-
blow features

Regression ANN R-squared

[91] Oxygen blowing volume and
coolant amount prediction

n/a Process parameters and end-of-
blow features

Regression CBR þ SVM RMSE and hit rate

[92] Predict coolant requirements
of reblowing and amount
of coolant prediction

300 Blowing parameters, additives
information, and sampling
test results during the
process

Classification and
regression

Fuzzy network and
relevance vector
machine

Hit rate and RMSE

[49] Blowing oxygen volume
prediction

1381 Process parameters and
additives information

Regression Multiple
LR þ GPR þ k-
means clustering

RMSE, MAE, and
hit rate

[25] Yield of steel prediction 50 Process parameters, blowing
parameters, and additives
information

Regression SVR, RF, ANN, and
neuro-fuzzy
inference system

MSE, RMSE, and
R-squared

[71] Multiple element (C, Mn, Si,
S, and P) prediction

n/a Process parameters and time-
series data

Regression SVR EMSE

[93] Oxygen consumption
prediction

1273a Process parameters and end-of-
blow features

Regression DT þ SVR and
DT þ MLP

MAE and RMSE

[34] Oxygen content of end-of-
blow prediction

1084 Process parameters, blowing
parameters, and additives
information

Dimension
reduction þ regression

PCA þ MLP network RMSE

[94] Blowing stage judgment 41 Flame information (image) Classification þ regression MLP Recognition rate

[30] Decarburization rate
prediction

1100 Blowing parameters and time-
series data

Regression ANN R-squared

[63] Endpoint Mn prediction 4808 Process parameters, blowing
parameters, additives
information, and time-
series data

Regression Ridge regression, RF,
and gradient
boosted regression
tree

RMSE and
R-squared

[39] Percentage of iron content of
slag prediction

1400 Process parameters, blowing
parameters, and additives
information

Regression SVR MAE

[46] Endpoint oxygen prediction 1200 Process parameters, blowing
parameters, and additives
information

Regression CNN Hit rate

[95] Oxygen consumption
prediction

901 Process parameters and
additives information

Clustering þ regression k-means
clustering þ LR

R-squared and hit
rate
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TABLE 6 (Continued)

Ref. Application
No. of
samples Types of features ML task Method Evaluation metric

[74] Oxygen blowing volume and
coolant amount prediction

90 Process parameters, blowing
parameters, and additives
information

Regression SVR MAE and hit rate

[96] Blowing endpoint time 350 Flame information (radiation
spectrum)

Regression SVR n/a

[97] Blowing endpoint judgment 60a Flame information (image and
radiation spectrum)

Classification SVM Accuracy

Abbreviations: ANN, artificial neural networks; BOF, basic oxygen furnace; CBR, case-based reasoning; CNN, convolutional neural network; GPR, Gaussian process regression;
LSTM, long short-term memory; MAE, mean absolute error; ML, machine learning; MLP, multilayer perceptron; n/a, not applicable; RF, random forest; RMSE, root mean
squared error; SVR, support vector machines for regression.
aIt is not specified whether these are total samples or training samples.

F I GURE 6 Dataset size distribution in ML for BOF studies. This plot illustrates the range of dataset sizes used in the training of ML models, spanning
from less than 200 to between 5000 and 10,000. Note that only the papers that clearly mention the size of the training samples in their models are counted.
Despite the vast amounts of data available in steel plants, it is evident that most studies have yet to fully leverage this resource. BOF, basic oxygen furnace;
ML, machine learning.

F I GURE 7 Yearly distribution of published papers on ML for the BOF. This chart illustrates the annual count of papers published on the application of
ML techniques to the BOF process. A peak is evident in 2022, and the amount of research published in 2023 thus far suggests a continued upward trend in
this area of study. BOF, basic oxygen furnace; ML, machine learning.
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